Nature Genetics 54권, 1919~1932페이지(2022)이 기사 인용
20,000회 액세스
26 인용
55 알트메트릭
측정항목 세부정보
도메인 및 구조적 루프 수준에서 3차원(3D) 게놈 폴딩을 실질적으로 교란함에도 불구하고 CTCF(CCCTC 결합 인자)와 코헤신의 급성 고갈이 대부분의 유전자의 발현에 미미하게만 영향을 미치는 이유는 아직 불분명합니다. 이 수수께끼를 해결하기 위해 우리는 마우스 배아 줄기 세포에서 고해상도 Micro-C 및 초기 전사물 프로파일링을 사용했습니다. 우리는 인핸서-프로모터(E-P) 상호작용이 CTCF, 코헤신 또는 WAPL의 급성(3시간) 고갈에 크게 둔감하다는 것을 발견했습니다. YY1은 E-P 루프의 구조적 조절자로 제안되었지만 급성 YY1 고갈은 E-P 루프, 전사 및 3D 게놈 폴딩에 최소한의 영향을 미쳤습니다. 놀랍게도, 살아있는 세포, 단일 분자 영상을 통해 코헤신 고갈이 염색질에 대한 전사 인자(TF) 결합을 감소시키는 것으로 나타났습니다. 따라서 CTCF, cohesin, WAPL 또는 YY1은 대부분의 E-P 상호 작용 및 유전자 발현의 단기 유지에 필요하지 않지만, 우리의 결과는 cohesin이 TF가 목표를 보다 효율적으로 검색하고 결합하도록 촉진할 수 있음을 시사합니다.
높은 처리량의 염색체 형태 캡처(Hi-C) 기반 분석은 3D 게놈 폴딩에 대한 우리의 이해를 변화시켰습니다1,2. 이러한 연구를 바탕으로 우리는 3D 게놈 접힘의 최소 세 가지 수준을 구별할 수 있습니다. 첫째, 게놈은 각각 활성 및 비활성 염색질 세그먼트에 해당하는 A 및 B 구획으로 분리되며 Hi-C 접촉 맵에서 격자 무늬 패턴으로 나타납니다3. 둘째, CTCF와 코헤신 단백질은 아마도 DNA 루프 압출을 통해 게놈을 위상학적 연관 도메인(TAD)4,5 및 구조적 염색질 루프6로 접는 데 도움이 됩니다7,8. 셋째, 훨씬 더 미세한 규모에서 전사 요소는 E-P 및 프로모터-프로모터(P-P) 상호 작용과 같은 장거리 염색질 상호 작용에 참여하여 로컬 도메인을 형성합니다9,10,11.
CTCF, 코헤신 및 코헤신 조절 단백질의 급성 단백질 고갈을 Hi-C 또는 이미징 접근법과 결합한 우아한 실험을 통해 처음 두 수준, 즉 TAD 및 구획을 조절하는 데 CTCF와 코헤신의 역할이 밝혀졌습니다. 그러나 Hi-C는 3D 게놈 접힘의 세 번째 수준, 즉 미세한 규모의 전사적으로 중요한 E-P/P-P 상호 작용을 포착하는 데는 효과적이지 않습니다. 유전자 발현 조절에서 CTCF와 cohesin의 역할에 대한 우리의 이해는 주로 몇 가지 발달 유전자좌에 초점을 맞춘 유전 실험에서 나왔습니다. 따라서 CTCF/cohesin이 E-P/P-P 상호작용과 유전자 발현을 조절하는지, 언제, 어디서, 어떻게 조절하는지는 불분명합니다.
우리는 최근 Micro-C가 E-P/P-P 상호 작용9,17을 포함하여 뉴클레오솜 해상도22,23에서 초미세 3D 게놈 접힘을 효과적으로 해결할 수 있다고 보고했습니다. 본 연구에서는 Micro-C, 염색질 면역침전 시퀀싱(ChIP-seq), 총 RNA 시퀀싱(RNA-seq) 및 초기 RNA-seq24를 사용하여 CTCF, RAD21(cohesin subunit), WAPL( 코헤신 언로더) 또는 YY1(추정 구조 단백질25)은 마우스 배아 줄기 세포(mESC)의 유전자 조절 염색질 상호 작용 및 전사에 영향을 미칩니다. 마지막으로 YY1의 역학에 초점을 맞춰 TF 결합을 촉진하는 데 있어 코헤신의 예상치 못한 역할을 발견했습니다.
우리의 이전 연구는 Micro-C를 사용하여 미세한 3D 게놈 구조가 전사 활동과 잘 연관되어 E-P 및 P-P 교차점에서 '점' 또는 '루프'(용어 방법 참조)를 형성한다는 것을 밝혔습니다. 본 연구에서 우리는 새로 개발된 루프 호출자 Mustache26(그림 1a) 또는 Chromosight27(확장 데이터 그림 1a)을 사용하여 mESC에서 통계적으로 중요한 75,000개 이상의 루프를 식별했습니다. 이는 이전 보고서보다 약 2.5배 더 많은 수치입니다9,26 및 약 4 × Hi-C26,28보다 더 많습니다(확장 데이터 그림 1b). 루프 앵커(확장 데이터 그림 1c, d)에서 로컬 염색질 상태 분석을 통해 이러한 루프를 코헤신 루프(~13,735), E–P 루프(~20,369), P–P 루프(~7,433) 및 폴리콤으로 하위 분류했습니다. - 관련 접점(~700)(그림 1a,b), 코헤신 루프의 경우 중간 크기가 ~160kb이고 E–P/P–P 루프의 경우 ~100kb(확장 데이터 그림 1e)입니다.
75,190 chromatin dots/loops, subclassified into four primary types (Mustache loop caller26; see Methods and Supplementary Note). b, Probability distribution of loop strength for cohesin, E–P, P–P and random loops. Chromatin loop numbers are shown on the left. The box plot indicates the quartiles for the loop strength score distribution (min. = lower end of line, Q1 = lower bound of box, Q2 = line in box, Q3 = higher bound of box and max. = higher end of line). Genome-wide averaged contact signals (aggregate peak analysis (APA)) are plotted on the right. The contact map was normalized by matrix balancing and distance (Obs/Exp), with positive enrichment in red and negative signal in blue, shown as the diverging color map with the gradient of normalized contact enrichment in log10. The ratio of contact enrichment for the center pixels is annotated within each plot. This color scheme and normalization method are used for normalized matrices throughout the manuscript unless otherwise mentioned. Loop anchors are annotated as ‘C’ for CTCF/cohesin, ‘P’ for promoter and ‘E’ for enhancer. Asterisks denote a P < 10−16 using two-sided Wilcoxon’s signed-rank test. The data are presented in the same format and color scheme throughout the manuscript unless otherwise indicated (n = 37 biological replicates)9. c, Genome-wide averaged transcript counts for nascent transcript profiling. Genes are grouped into high, medium and low expression levels based on nascent RNA-seq data (gene body) and rescaled to the same length from TSS (transcription start site) to poly(adenylation) cleavage site (PAS) or TES (transcription end site) on the x axis. d, Rank-ordered distribution of loop strength against gene expression for cohesin, E–P and P–P loops. Gene expression levels for the corresponding chromatin loop were calculated by averaging the genes with TSSs located ±5 kb around the loop anchors. Loop strength was obtained from the same analysis shown in b. The distribution for each loop type was fitted and smoothed by LOESS (locally estimated scatterplot smoothing) regression. Error bands indicate fitted curve ± s.e.m. with 95% confidence interval (CI). e, APAs are plotted by paired E–P/P–P loops and sorted by the level of nascent transcription into high, mid and low levels./p>90% of CTCF peaks and 60% of cohesin peaks are significantly decreased on loss of CTCF (Padj < 0.05; Fig. 3e and Extended Data Fig. 3g). Despite the substantial loss of cohesin peaks, biochemical fractionation experiments show that the fraction of RAD21 associated with chromatin remains fairly constant 3 h after CTCF degradation (Extended Data Fig. 2f, green box). Thus, our results are in line with the widely accepted conclusion that CTCF positions cohesin43. On the other hand, loss of cohesin affects a subset of CTCF binding (Fig. 3c,d)13, resulting in ~20% reduction in the number of CTCF peaks (Fig. 3e) and a slight decrease in its global chromatin association (Extended Data Fig. 2f, blue box)./p> 0.1 µm2 s−1), which can be separated further into slow (Dslow ~0.1–2 µm2 s−1) and fast moving (Dfast > 2 µm2 s−1). Scale bar, 1 μm. f, Aggregate likelihood of diffusive YY1 molecules. Top, bar graph showing fractions of YY1 binned into bound, slow- and fast-diffusing subpopulations. Bottom, YY1 diffusion coefficient estimation by regular Brownian motion with marginalized localization errors. g, Western blots of cytoplasmic (Cyt) and nuclear proteins dissociating from chromatin at increasing salt concentrations (Extended Data Fig. 2b). A subpopulation (~30%) of YY1 stays on chromatin, resisting 1 M washes. Ins, insoluble pellet after sonication; Son, sonicated, solubilized chromatin. Percentage of total shows the signal intensity of the indicated fractions divided by the total signal intensity. Anti-histone 2B controls for chromatin integrity during fractionation. h, FRAP analysis of YY1 bleached with a square spot. Error bars are fitted curve ± s.e.m. with 95% CI. i, Slow-SPT measuring YY1 residence time. Individual molecules were tracked at 100-ms exposure time to blur fast-moving molecules into the background and capture stable binding. The unbinding rate is obtained by fitting a model to the molecules’ survival curve. Each datapoint indicates the unbinding rate of YY1 molecules in a single cell. The box plot shows quartiles of data. Error bars are mean ± s.d. j. Slow-SPT measures YY1’s residence time at multiple exposure times./p>90% depletion after 3 h of IAA treatment (Fig. 7a and Extended Data Fig. 9a). Despite the high degradation efficiency, neither YY1’s nuclear distribution nor its clustering was strongly affected after acute loss of CTCF and cohesin in either live or fixed cells (Fig. 7b,c and Extended Data Fig. 9b). This suggests that the maintenance of YY1 hubs is independent of CTCF and cohesin./p>82% of these loci were associated with promoter regions (Fig. 7f and Extended Data Fig. 9d,e). In contrast, both CTCF and WAPL depletion had a negligible effect on YY1 occupancy (Fig. 7f and Extended Data Fig. 9d,e). In biochemical fractionation analysis, we also observed a similar, though less pronounced, reduction in YY1 chromatin association after RAD21 depletion (Extended Data Fig. 9f). To test whether cohesin facilitates the target search of TFs in general, we performed spaSPT on additional TFs. We thus generated RAD21–AID cell lines stably expressing either HaloTag-conjugated SOX2 or KLF4 and found that the bound fraction of both TFs was reduced by ~20% after 3-h cohesin degradation (Extended Data Fig. 9g). These results suggest that cohesin probably facilitates chromatin binding of TFs in general./p>20% of E–P/P–P loops can cross TAD boundaries and retain high contact probability and transcriptional activity (Fig. 2)18,35; (2) only a very small handful of genes showed altered expression levels after CTCF, cohesin or WAPL depletion (Fig. 3)12,13,14,15,16; (3) CTCF and cohesin loops are both rare (~5% of the time) and dynamic (median lifetime ~10–30 min)34; (4) most of the E–P/P–P loops persist after depletion of these structural proteins (Fig. 4)39,63; (5) CTCF/cohesin generally does not colocalize with transcription loci67; and (6) E–P loops and transcription can be established before CTCF/cohesin interactions on mitotic exit71, in some cases even with no CTCF/cohesin expression36,65,66. Second, YY1 was proposed to be a master structural regulator of E–P interactions25 (Fig. 8, Model 2). However, our Micro-C data are inconsistent with this model, because acute YY1 depletion has little effect on E–P/P–P interactions or gene expression. It is still possible that YY1 specifically connects development-related chromatin loops during neural lineage commitment47, but is less important in the pluripotent state. In summary, we conclude that, in mESCs, CTCF, cohesin, WAPL or YY1 is not generally required for the short-term maintenance of most E–P interactions and the subsequent expression of most genes after acute depletion and loss of function./p>2. Full lists of DEGs are available in Supplementary Table 11./p>2). Full lists of DEGs are available in Supplementary Table 12./p> 100 & intensity > 100 & sigma < 220 & uncertainty_xy < 50; (2) merge: Max distance = 10 & Max frame off = 1 & Max frames = 0; and (3) remove duplicates enabled. This setting combines the blinking molecules into one and removes the multiple localizations in a frame./p>